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Hydrogen-Deuterium Kinetic Isotope Effects for 
•y-Hydrogen Rearrangement in 2-Hexanone Following 
Photochemical Excitation, Electron Impact 
Ionization, and Anodic Oxidation 

Sir: 

Photochemical excitation, anodic oxidation, and electron 
impact ionization all lead 2-hexanone to a reactive state in 
which a hydrogen atom is transferred from C-5 to the carbonyl 
oxygen.1 In the photochemical and mass spectrometric ex­
periments this event leads to fragmentation of the rearranged 
molecule to produce propene and, respectively, the enol of 
acetone and the cation radical of the enol of acetone.2 This 
famous example of parallelism in chemical behavior between 
molecules ionized by electron impact and molecules subject 
to photochemical excitation is sullied by the comparison of the 
hydrogen-deuterium kinetic isotope effects which is nearly 63 

for the photochemically reactive triplet state and nearly 1 for 
the cation radical produced in the mass spectrometer.4 

Because isotope effects may be reduced in magnitude by 
increasing the internal energy of the reacting molecules, as by 
raising the temperature,5 the reduced isotope effect in the 
cation radical produced by electron impact could be assigned 
to a high internal energy residue left by the ionization process. 
Such a conclusion would be in conflict with the quasi-equi-
librium theory of mass spectrometry6 which can be shown to 
predict that a reaction with a slow preexponential factor and 
a low energy of activation should only occur from molecular 
cation radicals of low internal energy.7 The electron impact 
induced rearrangement under discussion here is a process 
which is characterized by these kinetic parameters. Ic 

An alternative explanation would relate the low isotope ef­
fect to the earlier transition state demands of the cation radical 
compared with that of the triplet. Such reasoning would see 
the cation radical as inherently more reactive and would relate 
the difference between the photochemical triplet and the cation 
radical to the same reasons as the long-known difference in 
isotope effect between chlorine atom and bromine atom 
undergoing homolytic substitution at hydrogen or deuterium 
on the methyl group of toluene: the isotope effects are nearly 
1 for chlorine atom and nearly 5 for bromine atom.8 In further 
support of this notion the isotope effect for the 7-hydrogen 
abstraction of the primary amine cation radical intermediate 
of the Hofmann-Loeffler-Freitag reaction is 1.2, while the 
same reaction for the stabilized 7V-alkyl-substituted amino 
group cation radical is 3.2.9 

If the low isotope effect for the 7-hydrogen rearrangement 
observed in the mass spectrometer derived from the reactive 
nature of the cation radical rather than its means of production, 
then one might expect a comparable isotope effect for a 
7-hydrogen rearranging cation radical produced in solution. 
Anodic oxidation of 2-hexanone to 2-hexanone cation radical 
takes place in solution at near ambient temperatures115 and we 
therefore measured the hydrogen-deuterium isotope effect for 
the 7-hydrogen transfer in this species. 

In addition to isolation of the previously described 7-ace-
tamido-2-hexanone (1), we have also obtained a second new 
material 2,4,7-trimethyl-4,5-dihydro-l,3-oxazepine (2)1 0 

substituted at the 7 position which is apparently the result of 
internal capture of the intermediate precursor to 1. These 
transformations are shown in Scheme I. 

Miller has presented evidence for the mechanism outlined 
in Scheme I . l b Such a process in which a chemical step (7-
hydrogen transfer) is both preceded and followed by elec­
tron-transfer steps is commonly encountered and is designated 
an ECE mechanism.11 At potentials above the oxidation po­
tential, as utilized in this work, the electron-transfer steps are 
expected to be much faster than the chemical step. This kinetic 
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situation will both preclude reversal of the 7-hydrogen transfer 
and as well make this step rate determining. Electrolysis of 
5-monodeuterio-2-hexanone (3)9 in the electrochemical cell 
and measurement of the hydrogen-deuterium content of the 
products 1 and 2 would therefore yield the isotope effect for 
the 7-hydrogen transfer. 

Table I presents the results of these electrochemical ex­
periments. We have moreover subjected 3 to electron impact 
mass spectrometry at varied ionizing voltage and temperature 
and measured the deuterium to hydrogen ratio of the 
[C 3H 6O]+- product of the rearrangement. These data are 
presented in Table II. 

Two points may be drawn from inspection of Table I. The 
magnitude of the isotope effects12 is consistent with a low 
primary effect and therefore in line with the ECE mechanism 
proposed"3 and discussed above.11 The mechanistic demand 

Table !."•* Isotope Effect ( ^ H M D ) 

v ainode Jr ^ 

+ 2.3 V, 

CH11CN /H/> 

* D ' 
NH^CH., + N ^ O 

H(D) O H(D) 

1 

temp, 0C 

O 
20 
40 

1 

1.27 ±0.14 
1.47 ±0.10 
1.38 ± 0.19 

2 

1.24±0.10 

1.28 ±0.12 

" The deviations are the precision of various runs taken over some 
months. * The oxidations were conducted in an H cell at +2.3 V fol­
lowing Millerlb except that UBF4 was the supporting electrolyte. The 
products were separated and collected by extraction followed by GC 
onSE-30.10 

Table II." Isotope Effect (kH/kD) 

eV 

10 
70 

D^ xX"-<* 
50 0C 

1.4 ±0.2 
1.6 ± 0.1 

H OH(D) 

75°c 

1.4 ±0.2 

1 
1250C 

1.5 ±0.2 
1.6 ±0.1 

a Ratios of m/e 58 to 59 as shown corrected for 13C contribution. 
Electron voltages are uncalibrated (electronvolts); temperatures are 
of the ion source; the inlet was at room temperature. Measured on a 
Du Pont 21-490 mass spectrometer. 
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(Scheme I) that the isotope effects be the same for production 
of 1 and 2 is met. 

The key observation that the isotope effects in the two ex­
perimental systems (Tables I and II)13 are nearly identical fits 
the hypothesis that the low isotope effect in the mass spec­
trometer derives from the nature of the cation radical inde­
pendent of its formative history. The correspondence draws 
one to the conclusion that 2-hexanone cation radical demands 
the same transition state for 7-hydrogen abstraction under 
vacuum as in the complex solvent medium of an electro­
chemical cell. The molecular cation radicals undergoing re­
arrangement in the mass spectrometer cannot be distinguished 
from thermal molecules in their discrimination for hydrogen 
over deuterium.14'15 
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The Mechanism of Flavin 
4a Substitution Which Accompanies Photolytic 
Decarboxylation of a-Substituted Acetic Acids. 
Carbanion vs. Radical Intermediates 

Sir: 

Flavin-mediated photodecarboxylation (PDC) of certain 
a-substituted acetic acids (eq 1) has been claimed to serve as 
a model for flavoenzyme-catalyzed dehydrogenations.1'2 The 
reaction is facile only in cases in which a heteroatom (O, N, 
and S) is bonded directly or vinylogously to the methylene 
carbon of the substituted acetic acid (in eq 1, R is CeH 5O- for 
la, C6H5S- for lb, and 3-indolyl for Ic). PDC of a-hydroxyl2a 

or a-amino acids3 in the presence of Fl0x yields a-keto or 
a-imino acids presumably by elimination from the 4a adduct.4 

It has been suggested that the mechanism of eq 1 involves 

CH3 

^ T la-c 
O 

Fl CH3 
r lox J 

H CH2—R 
2a-c 
4a-FlCH2R 

nucleophilic attack of a carbanion intermediate upon the 4a 
position of Fl0x (eq 2).1-2 However, PDC of the a-substituted 

hv isc 
Fl ——•- 1Fl * —— 3Fl * 
r l O J 1 1 O J l 1 1 O X 

RCH2CO," I * v f~\ 
— \ 3Fl0x* RCH2CO2C-) 

\—- CO2 + 4a-FlCH2R (2) 

carboxylic acids la-c by the triplet states of benzophenone, 
quinones and various quinoid dye molecules has been estab­
lished (spin trapping, CIDNP, product analysis)5 to be radical 
in nature. We are now able to show that a radical mechanism 
is involved in the 3Fl0X*-mediated PDC reactions. This com­
munication deals with the results of laser flash photolysis and 
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